. |

—I
T .
il X |Il
!
iy
i

i
e,

JOB CONTROL LANGUAGE

FOR LDOS 6.3 TRSDOS 6.1 6.2 LS-DOS 6.3

PRESENTED BY

Christopher Fara

JCL by Chris

Here finally is & common-sense presentation of the "Job Control Language" for Mod-Il
LDOS and Mod-4 TRSDOS/LS-DOS. The "official" documentation is- full of intimidating
terms like "maecro" or Ycompiled language", and would make us believe that JCL must
be something awfully "advanced". It is not. Once you organize it and get rid of the
"powerful" words, JCL turns out to be rather simple. Read on, try out our examples,
make up your own, and you'll soon agree: it's easy, often quite useful, always fun.

Page 1 JCL OUTLINE

2 Designing JCL

3 Building JCL

4 Doing JCL

5 Compiling JCL

6 JCL Tokens

8 JCL Blocks

10 JCL Messages

i1 JCL Symbols

12 JCL Errors

13 JCL REFERENCE

14 Summary of Instructions : .

18+ Alphabetical Listing of Instructions
Back cover index, Bibliography

Radic Shack is a division of Tandy Corporation

TRS-80 is & registered trademark of Tandy Corporation

TRSDOS is a registered trademark of Tandy Corporation .

LDOS and LS-DOS are trademarks of Logical Systems Ine. and Misosys Inc.

"JCL by Chris" Copyright 1989 by Christopher Fara. All rights reserved.

Reproduction without express permission from the copyright owner is prohibited. While
reasonable efforts have been made to assure the accuraey of the information presented
herein, the author and publisher assume no liability for any errors and omissions, or for
any damages whatsoever arising from the use of this book., However, readers are
encouraged to bring any errata to the attention of the publisher. '

Printed in the United States of America

$ 8 7T 6 5 4 3 2 1
Pullished and Distributed By

. Computen Hews §0

P. 0. Box 680
CAsSPER. WYOMING 82602-0680

JCL FILES

JCL INSTRUCTIONS

CONFUSING TERMS "Macro"

"Token"

"Compilation"

JCL OUTLINE

Job Control Language, JCL, is a kind of simple
"programming language for non-programmers",
available on Mod-II (and 1) under LDOS, and on
Mod-4 under TRSDOS and LS-DOS. Compared with
BASIC's 120+ commands, JCL is very simple indeed.
Its vocabulary consists of some 20 instruetions which
can be used to enhance and modify the performance
of the DOS eommand DO.

The basic idea of DO is this. First, we create files
which contain a series of lines such as DOS
commands. Those files usually have the extension
/JCL and are therefore ecommonly called "JCL-files".
When we later DO a JCL-file, the "prefabricatedn
commands are fetched from the file, one line at a
time, and processed just as if they were typed "live"
from the keyboard. The kind and sequence of input
lines must be carefully designed to mateh the
sequence expected by any given application, but
routine jobs can be nicely gutomated this way.

In addition to DOS commands and other inputs, JCL
instructions can be inserted in a JCL-file to:

(1) Execute some action, such as display informative
messages, pause, generate sudible alert tones, ete.
These are called EXECUTABLE instructions.

(2) Seleet from "raw" JCL-files only certain specific
lines, modify those lines, and so on. These are ecslled
COMPILATION instructions, because they "compile",
ie. put together an executable sequence of lines from
a larger collection in the original "raw" files.

For some obscure reason the JCL instructions are
called "maecros” in the "official” documentation. But
in general computer usage "macro” (from Greek
meaning "long™) is a feature which expands some
short input (eg. a single keystroke) into a longer
input text (eg. an entire phrase). The JCL "macros"
do nothing that faney. Each JCL instruction merely
performs some specifie simple action and that's all.

Another curious word, but it really means a sort of
simple "variable" used by JCL in a similar way
variables are used in BASIC programs.

Normally in computer terminology to "eompile"” means
to use a "compiler" to translate a program written in
a "high level" language such as BASIC or FORTRAN,
into a /CMD~type machine program executable from
DOS. The JCL "eompilation” has nothing to do with
that. 1t simply moves some lines from the original
JCL-file to another JCL-file called SYSTEM/JCL.

JCL Qutline

Page 1

DESIGNING JCL

DOS COMMANDS

BASIC COMMANDS

MACHINE PROGRAMS

Practically any DOS or BASIC command can be
included in a JCL-file. In fact any input to any
program (even /CMD-type machine program) can be
"prefabricated" this way, as long as it is predictable.
The only other restriction is this: it must be the kind
of input which is 'entered’, ie. some text typed and
"terminated” by pressing the 'enter' key. Single key
inputs (as in the BASIC command INKEY$) won't
work from JCL~files.

To design a JCL-file for a procedure with numercus
commands and inputs, it is best to first run it "live"
and carefully note the sequence and spelling of all
routine inputs, up to the first "non-routine" input.
Then type the routine inputs into a JCL-file.

With only a few exceptions, any DOS command ecan
be included in a JCL-file. Suppose each morning,
after power-up, you want to:
. refresh memory and see a list of DOS commands
. make sure BASIC is on drive :0
. turn on the clock display on the sereen
A simple 3-line JCL-file would do this job for you:
LIB
DIR BASIC:0 {INV)
TIME (CLOCK=0N)

Commands which cannot be included in the JCL-file:
BUILD DEBUG
RESET SYSGEN
SYSTEM (SYSTEM=) SYSTEM (SYSGEN)
Also not allowed are any commands which
. require swapping of disks with the (X} parameter
. Pequire pressing of a single key to continue
. include QUERY=ON (to prevent query specify Q=N
in such commands as CONV, FORMAT, PURGE, ete).

All BASIC eommands, as well as responses to INPUT
and LINE INPUT (but not single key responses to
INKEY$) can be passed from JCL-files, For example
BASIC :
RUN "PROGRAM/BAS"
CHRIS FARA
//STQP
enters BASIC and runs a program which asks for
user's name as the first INPUT. The JCL instruection
//STQOP is required to leave control with the BASIC
program and to prevent premature exit to DOS.

Inputs requested by a /CMD-type machine program
via Mod-3 CALL 64 ($KBLINE) or Mod-4 SuperVisory
Call #9 (QKEYIN) are accepted from JCL-files. As in
BASIC, such files must end with the //STOP
instruction to prevent premature exit to DOS.

JCL Qutline

Page 2

BUILDING JCL

BUILD COMMAND

. BUILD PROCEDURE

The JCL-files are plain ASCI files, ie. they contain
only human-readable characters and such "econtrol"
characters as "tab” or "earriage return". Each line in
a JCL-file may have up to 63 characters {Mod-3) or
up to 79 characters (Mod-4), and is terminated by
"carriage return" ASCIl code decimal 13. Any word
processor capable of outputting text in pure ASCII
format can be used to create and edit JCL-files (eg.
use LDOS/LSDOS editor TED, or from Scripsit save
such files with A-option). Or use BUILD eommand.

The DOS command BUILD is a sort of "poor man's
word processor”. It has a couple of limitations:

(a) Once a line is typed and ‘entered it cannot be
edited. To correct a mistake or change something, we
must re-BUILD the entire file "from seratch®.

(b) To BUILD a file we must make sure it does not
yet exist on one of the disk drives. If it does exist
then BUILD aborts. In this ecase we must KILL
(Mod-3) or REMOVE (Mod-4) that file, or pick a
different name for our file and try again.

But the advantage of BUILD is that it's a "library
command" always available at DOS READY prompt.

Suppose we want to BUILD a file called INFO/JCL.
Verify that it does not exist yet and from DOS type

BUILD INFO 'enter'

The message "Building INFO/JCL" appears. Notice
that if we don't specify extension then /JCL is
automatically added to file name. Next type, for
eXxample

LIB 'enter?

DIR BASIC:0 (INV) 'enter!'

TIME (CLOCK=ON) 'enter’

'break’
Pressing 'break' as the first key at the beginning of
a line ends the BUILD process and returns to DOS (in
Mod-4 we can also press 'eontrol shift @' instead of
break').

To execute all 3 commands we now only need to type
DO INFO 'enter’

Notice that the DO command automatieally assumes
that INFO has extension /JCL, and we don't need to
type it. Had we "built" our INFO with an extension
other than the "default” /JCL, then it would have to
be typed in the DO command, However, extensions
other than /JCL are normally not recommended.

JCL Outline

Page 3

DOING JCL

COMPILATION

EXECUTION

SYNTAX OF "DO"

control

parameters

semicolon ;

Our example from previous page
DO INFO
is the simplest form of DO and does 2 things:

First it selects ("compiles") executable lines from the
original JCL-file and puts them inte another file
which is always called SYSTEM/JCL. If that file
already exists then it is overwritten by the new
information, otherwise it is created.

After this "compilation phase™ is completed, the
"execution phase™ begins: commands stored in
SYSTEM/JCL are executed one at a time.

The full syntax of the DO command has more options:
DO [control] file [(parameters,...)] [;]

The 'file' normally is just the name: extension /JCL
is assumed. Square brackets are never typed, but only
indicate optional items.,

A single character which must be separated by one
space from DO. If this character is omitted, then
both "compilation" and "exeeution® are processed as
in our DO INFO example above. The 'control' can be:

The "equals" sign means: don't make SYSTEM/JCL,
just execute what's in 'file'. In our INFO example we
could skip the "eompilation phase™ and enter

DO = INFO
This control option can only be used if 'file' does not
contain any JCL "eompilation" instructions.

The dollar symbol does the opposite of '=', For
example DO $ INFO only compiles SYSTEW/JCL but
does not execute it. It is useful when we wish to
LIST a complex SYSTEM/JCL before executing to be
sure it is "compiled" correectly.

Asterisk means: execute SYSTEM/JCL. In this case
we never specify 'file' or 'parameters’. Just enter

DO *
But if SYSTEM/JCL has not been compiled yet then
error "file not in directory” is generated.

Optional parameters, enclosed in round brackets, ecan
influence the "ecompilation” of SYSTEM/JCL. See
COMPILING JCL,

The DO command with many parameters could exceed
sereen width. In that case type as many parameters
as fit on the first line, close the round bracket, tvpe
semicolon and 'enter'. A question mark appears on
the next line: open round bracket, type remaining
parameters, close bracket and 'enter’, '

JCL Qutline

Page 4

COMPILING JCL

MULTI-PURPOSE FILES

PARAMETERS

PASSING VALUES

SELECTING BLOCKS

SAVING SYSTEM/JCL

As noted before, JCL T"compilation" does not
translate the original "raw" ASCII file into some
faney "machine program”, but merely moves lines
from that file into another ASCI file ecalled
SYSTEM/JCL. So why bother? :

The main advantage of "eompilation" is that from one
"raw" file we can "compile” and then execute
SYSTEM/JCL with varying contents to suit various
situations. This not only saves re-typing work, but
also conserves disk space. Under Mod-3 LDOS and
Mod-4 TRSDOS/LS-DOS the shortest possible disk file
uses 1.5K of disk space (one "granule™. That's about
1500 characters, enough for some 50-75 lines of a
typical JCL file! Even a complex multi-purpose file
can easily fit in one 1.5K file and replace several
single-purpose files.

The manipulation of the contents of SYSTEM/JCL is
done by specifying variables and/or labels in the
parameter field of the DO ecommand, in order to:

. pass variable values to JCL file, and/or

. select blocks of lines (procedures) for execution.

Any alpha-numeric "string" of up to 32 characters
can be passed to a variable ("token") specified in the
JCL file, by assigning the string to the "token" in
the parameter field of DO, For example
DO FILENAME (P=BASIC)

would replace P by BASIC wherever the "token" P
oceurs in the "raw" file. Turn page to JCL TOKENS
for more details about this feature,

Entire sequences of lines in the JCL-file can be
designed to perform various procedures. These blocks
of lines can be selected for execution by any of the
following techniques: '

. eonditional blocks

. included blocks (from other JCL files)

. labeled blocks

. numbered blocks

The block selection techniques are deseribed on two
pages following the discussion of JCL TOKENS.

We can compile and then save SYSTEM/JCL under
some different name, for example like this

DO $ FILE

COPY SYSTEM/JCL SOMENAME
and later get any such pre-compiled file back

COPY SOMENAME/JCL SYSTEM
This would seem to defeat one of the advantages of
compilation noted above (conserving disk space by
compiling SYSTEM/JCL as needed from one "raw"
JCL-file) but may be useful if we frequently switch
between various jobs and want to skip re-compilation,
especially when it's a lengthy one.

JCL Outline

Page 5

JCL TOKENS

TRUE TOKENS

Manipulating the truth ...

Logical operators . . .

Muddling the truth . ..

NOT

AND

OR

Like in BASIC, variables can be used in JCL files,
except they are called "tokens" (another of those
confusing terms). A "token" can have up to 8 letters
and/or digits in any combination. Tokens are used

. in the //IF instruction to test if they are "true"

. to replace a token by a "string" of characters.

A token is "true" if it appears in the parameter field
of the DO command. For example :

DO FILENAME (1,X2,A=BASIC)
would make the tokens 1, X2 and A all "true". Notice
that, unlike BASIC variables, a JCL token ean start
with a digit and can even be just one single digit.

A token can be also made "true" within JCL-file. An
instruetion such as
//SET XYZ
would make the token XYZ "true" even if it wasn't
mentioned in the DO command. On the other hand
//RESET XYZ
would make this token "not true". Even if we specify
it in the DO command, it will be treated as if we
didn't specify it!

A Ttrue" token can be also changed into "not true"
by the "logical operator" NOT, represented by a
minus sign. For example

//TF -XYZ
means "if token XYZ is NOT true then compile next
line™,

The "logical AND" is represented by "ampersand". For
example, a line like this

//TF A&B
means "if both A AND B are true then compile next
line", If one of the ANDed tokes is not true, then the
combination is also "not true".

The plus sign means "logical OR™:
//TF A+B+C+D
Here the combination is "true™ if at least one of the

tokens is "true" (eg. A, B and C are "not true", but D

is "true", ete).

Note: don't type spaces between tokens and operators
because it may cause "illegal line format" error.

Logical operators can be "mixed and matehed" to
express all kinds of logic. For example

//1IF A+B&-C
means "if A is true OR B is NOT true AND C is NOT
true, then go shead, compile next line”, ete. While
such combinations are "legal", it's quite easy to get
things confused this way. Don't overdo it.

See also JCL BLOCKS later in this seetion.

JCL OQutline

Page 6

REPLACING TOKENS If we enter a command such as

DO FILENAME (F=BAS)
the "string" BAS will be assigned to the token F. In
the JCL-file we might have a line like this

#token# DIR /#F#:0

A token between two "pound" symbols means: replace
this by the string assigned to the token. In the
resulting "compiled” SYSTEM/JCL we will find

DIR /BAS:0
On another occasion we might

DO FILENAME (F=CMD)
which would produce

DIR /CMD:0
in the compiled SYSTEM/JCL. But DO FILENAME
without parameters would "compile nonsense'. The
result would be DIR /#F#:0 because no replacement
is available. So be careful. Of course such simple
"one-liners” wouldn't justify bothering with BUILD
and DO, and would most likely be part of a longer
procedure. But the general idea how "tokens" can be
used to produce various results from the same JCL
file should be evident from the above examples.

In-file assignments . . . A string can be also assigned to a "token™ within
JCL-file (instead of being passed from the DO
command). Consider this JCL fragment:

//1IF =N

//ASSIGN N=DATADISK

//END

FORMAT :1 (Q=N,ABS,NAME="#N#")
If we compile this without parameters

DO FILENAME
then //IF -N (if token N is NOT "true™ causes the
compilation of the next line which assigns a default
disk name (to prevent nonsense as in the previous
example above). In the compiled SYSTEM/JCL we'll
find

FORMAT :1 (Q=N,ABS,NAME="DATADISK")
But if that file is compiled with a command such es

DO FILENAME (N=DISK1234)
then the token specified in the parameter field is
"true", the //IF test fails, //ASSIGN is skipped, the
string DISK1234 is passed to the file and replaces the
token N. The result will be

FORMAT :1 (Q=N,ABS,NAME="DISK1234™

Quoted strings . . . Sometimes double quotes must be used in //ASSIGN,
if the string contains characters which could confuse
the DO ecommand. For example:

//ASSIGN F="(INV)"

DIR #F#
Here the idea is to produce DIR (INV) in the compiled
SYSTEM/JCL. But without the quotes (INV) would be
mis-interpreted by DO as a "programmers comment”
(see JCL MESSAGES later in this section) and
nothing would be assigned to the token F.

JCL OQutline Page 7

JCL BLOCKS

CONDITIONAL BLOCKS

INCLUDED BLOCKS

One "raw"™ JCL-file can contain several "blocks"
(sequences) of lines designed to perform various
job "procedures”. When a procedure is needed, a
block of lines can be selected for execution by one
of the following methods.

Conditional bloeks start with the JCL instruction
//IF token) :
As mentioned earlier, "oken" is a kind of variable. If
the token in the //IF is "true" then lines following

this instruction are compiled, up to

//ELSE or //END
whichever comes first. If the token is not true and
there is an //ELSE then lines following the //ELSE,
up to //END are compiled, The //ELSE instruection is
optional, but for every //IF there must be always a
matching //END. For example this fragment

//TF X

DIR

//ELSE

FREE

//END
would display directory if token X is "true",
otherwise it would display free disk space. Of course
in practical JCL-files not just one but several
command lines could be typed in each bloeck between
//IF and //ELSE, or between //ELSE and //END.

A token is "true" if it is specified in the parameter
field of the DO command, or is //SET or //ASSIGNed
in the JCL~file. Logiecal operators NOT, AND, OR
(represented by - & + symbols) can be used to modify
the "truth" of the //IF test. For details and examples
see JCL TOKENS earlier in this section, and the //IF
instruction in the reference section.

The instruction

//INCLUDE filespee
temporarily suspends the processing of the current
JCL-file and fetehes lines from another JCL-file. Its
lines are compiled, and when the "included" file is
done, then compilation of the main file resumes. For
example a fragment like this

//IF X

//INCLUDE NEXTFILE

//END
would test if the token X is "true™ and if so, it
would fetch somé lines from NEXTFILE/JCL. Bui if
the token X were "not true" then the lines from
NEXTFILE would not be included.

Included files may in turn //INCLUDE other files, and
so on, up to 5 (Mod-4) or 10 (Mod-3) "mested" levels!
The only other restriction is that //INCLUDE must
never be the last line in any JCL-file.

JCL Qutline

Page 8

LABELED BLOCKS

NUMBERED BLOCKS

Labeled blocks start with a label

QANYLABEL
which must begin with the @-symbol and may consist
of up to 8 letters and/or numbers in any combination.
When a JCL-file with labels is compiled with a
command such as

DO FILENAME (@LABEL)
and the label specified in the parameter field
matches one of the labels in the "raw" file, then
lines following that label are compiled (ie. moved to
SYSTEM/JCL), up to
. another label
. end of file
whichever comes first. If the label is not specified
then lines from the start of file up to any first label
are compiled. For example

. Specify a label

@FIRST

. Compile first block only

ASECOND

. Compile second block only

. and so on
In this example DO FILE (QFIRST) would display the
message "Compile first bloek only", but DO FILE
without parameters would display "Specify a label”,

Note that a label should never be the first line in
any JCL-file. Any number of different labels can be
ineluded in @ JCL-file, but only one can be selected
for processing in the DO command. Labels and tokens
can be combined in the parameter field.

Numbered blocks are similar to labeled bloecks, but
start with different markers .

//number :
which can be //0, //1, ete, up to //9. Another
difference is that a numbered block is not "eompiled"
but simply selected for execution by pressing a
matching digit key in response to the instruction

//KEYIN
which must appear ahead of the numbered blocks. If
the pressed digit matehes one of the blocks then
lines following the block marker are executed up to
. an //ABORT, //EXIT or //STOP instruction
. next numbered block marker
. end of file
whichever comes first. A "default" block marker ///
should be provided in such files: if the pressed key
does not mateh any numbered block, then lines
following the /// are executed.

Since the numbered blocks are not compiled but
simply executed when a matching digit key is
pressed, they can be also used in non-compiled files
(ie. files "done" with the '=' option). All other types
of blocks require eompilation. :

JCL Qutline

Page 9

JCL MESSAGES

EXECUTABLE MESSAGES

COMPILATION MESSAGES

PROGRAMMER'S COMMENTS

Messages and comments in JCL-files make the JCL
process more "user friendly". Also, even the author
of a JCL-file might forget after a while what that
particular file was meant to accomplish. Comments
help refresh our memory,

Executable messages are displayed during "execution
phase” of the DO processing. Two instruetions simply
display a message
.message (must start with dot, steady display)
//FLASH message (flashing display)
Messages can be also optionally displayed by
//INPUT
//KEYIN
//PAUSE
to "prompt" the operator for appropriate action
(press a key, insert diskette, ete).

In addition, an audible tone or series of various tones
{which is a sort of "message™ for the ears rather than
eyes) can be produced by the instruction

//ALERT)
Mod-4 has a built-in tone generator. Mod-3 needs an
amplifier connected to cassette jack.

Display of executable messages can be enhanced by
inserting ASCII "control characters”™ in a special
hex-coded format. For example %09 inserts a "tab",
%0A inserts a "line feed", ete.

Normally nothing appears on the sereen during the
"eompilation phase”. If we want to be informed what
is happening (particularly during a compilation of a
lengthy and complex JCL-file) then we ean insert
// .message (double slash and dot)

which is similar to the "executable" dot-message, but
displays the message only during the compilation
phase and is never moved to SYSTEM/JCL. The
display of "compilation messages" cannot be enhanced
with "eontrol characters".

Any "compilation instruetion" can have a eomment
added at the end of the line. It must be enclosed in
round brackets. For example in a line like this
//TF N (TEST IF DISK NAME IS SPECIFIED)

the text in brackets is a comment. This kind of
comment is never moved to SYSTEM/JCL (because
"ecompilation instructions” only econtrol compilation
process and are not moved to SYSTEM/JCL), and it
is not even displayed during compilation. But it can
be viewed when the JCL-file is LISTed on the sereen
or printer. The "programmers comments" can be only
added to "eompilation™ instructions, never to any
other lines in a JCL-file,

JCL OQutline

Page 10

JCL SYMBOLS

0

/7

In addition to the JCL instruetions, certain symbols
have special meaning in JCL-files:

Double quote: must enclose "string” in //ASSIGN if
the "string" contains characters which could be
mis-interpreted by the DO command.

See JCL TOKENS and //ASSIGN,

Pound symbol: if a token is enclosed within pound
symbols then in the "eompiled" SYSTEM/JCL it will
be replaced by a "string" specified in the parameter
field of the DO command or //ASSIGNed to it in the
JCL-file. See’ JCL TOKENS and //ASSIGN,

Percentage sign: means that two characters following
it represent a hex number. Any ASCII character can
be created this way, but only if file is "ecompiled",
For example a line like this
%44%49%52
representing ASCII codes for D, I, R, would produce
DIR
in the compiled SYSTEM/JCL. Normally, however, %
is used to insert "control characters” into JCL-files,
such as 'elear screen', 'tab', 'break', ete. See also
.message ("dot-message™) in the reference section,

Ampersand: means "logical AND"., Used in the //IF
instruction to check if two or more tokes are all
"true". See JCL TQKENS and //IF.

Round brackets: enclose "programmer's comment" in
"eompilation instructions”. See JCL MESSAGES.

Plus: means "iogical OR". Used in //IF instruetion to
test if at least one token is "true".
See JCL TOKENS and //IF.

Minus: means "logical unary NOT", Used in the //IF
instruction to cause compilation if token is "not true”
{opposite of normal "if true™).

See JCL TOKENS and //IF.

Period (dot): must be the first character of a
displayable message. See JCL MESSAGES.

Double slash: exeept for .message and @label all JCL
instruetions must begin with double slash.

Equals symbol: used in //ASSIGN instruction to assign
a "string" to a token, See //ASSIGN.

At-symbol: must be the first character of a label,
both in the JCL~file and in the parameter field of
the DO command, if a label is specified.

See JCL BLOCKS and @LABEL.

JCL OQutline

Page 11

JCL ERRORS

"File already exists"

"File not in directory™"

"Can't create SYSTEM/JCL"
"End of file / out of range”
"Too many INCLUDEs"

"Line too long"

"lllegal line format"
"String too long"
"Multiple definition™

"Too many labels"

"Procedure not found”

TRIAL COMPILATION

K.I'Slsl

Like any programming language, JCL is picky and
insists on exact spelling., All required dots, slashes,
ete, must be typed just so. Errors usually abort JCL
proeessing, with or without explanatory message.
Some typical error messages and probable causes are:

Attempt to BUILD a file under an existing name.

You enter DO * but SYSTEM/JCL has not been
"eompiled” yet.

System diskette is write-protected.

//INCLUDE instruection in the last line of JCL~file.
Too many "nested" levels of //INCLUDE.

More than 63 (Mod-3) or 79 (Mod-4) characters.

Usually caused by syntax errors, for example spaces
between tokens and "logical” operators (eg. A+-B&-C
is legal, but A + -B & -C usually generates error).

String longer than 32 characters assigned to a token.
Two or more values assigned to the same token.
More than one label specified in the DO ecommand.

Label specified in the DO command does not mateh
any label in the JCL-file,

Other mistakes may produce all sorts of ecurious
errors, depending on the situation:

. //IF without matehing //END.

. Some types of //ASSIGNED strings without quotes.

. //FLASH or //KEYIN messages "enhanced" with %.

. JCL instruction typed in first line of JCL-file (to
prevent this error, always start your JCL-files with a
"dot-message").

The best way to avoid serious disasters, especially
with complex JCL-~files, is to first "eompile™ with the
DO § option. Then LIST and ecarefully review the
resulting SYSTEM/JCL to make sure it contains the
desired lines. When everything looks good, then
simply DO * to execute it.

You know, "Keep It Simple, S... ", avoid confusing
logic such as toc many "nested" //IFs, complex "token
expressions” with many NOTs ANDs ORs, multiple
//SET //RESET //ASSIGN, ete. Amazing results can
be achieved with such "advanced techniques”, but
equally amazing mess is also quite possible.

JCL Qutline

Page 12

REFERENCE FORMAT

[1

UPPER / LOWER CASE
EXAMPLES
REMEMBER X

JCL REFERENCE

In this section all JCL-instructions are summarized in
their "logical™ order on the next 2 pages, followed by
detatiled descriptions in alphabetical order.

Each instruction in the alphabetical listing has a
separate bold heading, followed by a short title and
the word

EXECUTE
which means that this is an "executable" instruction
and may be used in JCL-files "done" with the DO =
option or in "compiled" files. The word

COMPILE
indicates "compilation" instructions which are used to
manipulate the compilation process and are never
moved to the resulting SYSTEM/JCL. They cannot be
used in files executed with the DO = option.

Square brackets indicate optional items which may be
omitted at user's discretion. These brackets are not
typed in the JCL-~file.

Instructions may be typed in upper or lower case, or
even mixed, it doesn't make any difference. For
example //ALERT is the same as //alert or //Alert.
However, we use here upper case to indicate words
which must be typed and spelled exactly as shown,
and lower case to indicate items such as messages to
be composed by the user,

Each instruction is illustrated by simple examples
written so the user may type them as-is and see how
things work. The examples are not intended to be
terribly praetieal, but should encourage the reader to
experiment. As with any programming language, the
best way to learn is to play with it a bit, see what
happens. Type the examples into a JCL-file, then
"eompile” with DO $ option, list SYSTEM/JCL to see
what you've got, and if it looks good, DO * to
execute SYSTEM/JCL and see if it does what it was
supposed to do.

Each instruction must be entered on a separate line.
Except for the "dot-message" (.message) a JCL
instruction can't be the first line of any JCL-file.
But DOS or BASIC commands and other inputs are
legal in the first line.

The //INCLUDE instruction can't be the last line.

The 'break’ key can be pressed any time to abort
proeessing of JCL-files.

JCL Reference

Page 13

SUMMARY OF
INSTRUCTIONS

. message
//FLASH ecount message

//ALERT piteh,silence,....

//PAUSE message
//DELAY duration
//SLEEP hh:mm:ss
//WAIT hh:mm:ss

//INPUT message

//KEYIN message

//EXIT
//STOP

//ABORT

"Executable" instructions perform indicated aection,
whether "compiled” or not.

"Compilation” instructions manipulate the compilation
process and are never moved to the resulting file
SYSTEM/JCL. They cannot be used with DO = option.

Each instruction must be entered on a separate line.

JCL executable instruections
Display 'message’ and continue {(must start with dot).
Flash 'message' specified 'count' of times (0 to 255).

Produces a tone (Mod-3 only if amplifier connected
to cassette jack). 'Piteh' can be 0 (high piteh) to 7
(low) always followed by a matching 0 (short silence)
up to 7 (long silence). If the sequence is enclosed in
brackets such as

//ALERT (0,0,1,0,2,0,3,0)
then it sounds indefinitely, until 'enter' is pressed to
continue, or 'break' to return to DOS.

Display optional ‘'message', wait for 'enter' to
continue, or 'break' to return to DOS.

Just pause a few seconds, no message. 'Duration' is a
number from 1 (0.1 see) through 256 (25.6 seconds).

- (Mod-4 only) Suspend JCL processing for a specified

period of hours, minutes, seconds.
Pause until hh:mm:ss matches system time.

Display optional 'message', wait for input from
keyboard terminated by 'enter', accept this input as
if coming from JCL file, and continue.

Display optional message, wait until one of the keys
0-9 is pressed, then proceed to execute selected
block of lines in the JCL file. Blocks start with
/{number (for example //0 or //3 ete)
and end with another //number, or triple slash
/7 (just 3 slashes in one line)
which means: if none of the blocks mateh the number
keyed-in, then proceed to line following ///.

dob done, return to DOS (not required if end of file).
Job done, but stay where you are (eg. in BASIC).

Job not done, but return to DOS (eg. error detected),

JCL Reference

Page 14

@label

//IF token

//TF ~token

//1F tokenl & token2
//IF tokenl + token2
//ELSE

//QUIT

//END

//SET token
//RESET token

// ASSIGN token="string"

#tokené

%hh

//INCLUDE filespec

//.message

//END {ecomment)

JCL cecompilation instructions

. If matehing '@label’ is specified in DO command then

"eompilation" selects only lines following the '@label’
in the "raw" JCL file, up to any next '@label' or to
end of file.

. Compile lines following this instruetion, up to //ELSE

or //END, but only if 'token' is "true".

. Compile if 'token' is NOT "true" (opposite of above).

Compile if 'tokenl' AND '"token2' are "true",
Compile if 'tokenl' OR 'token2' is "true" {or both).
Compile from //ELSE to //END if token is not "true".

Should be placed after //ELSE to abort compilation if
token is not "true" and no alternate action is desired.

Must terminate each //IF sequence. Sequences may
be nested. Each //IF must have a matching //END.

Makes 'token' "true" even if not specified in DO.

Makes "token' "not true™ even if specified in DO,

Replaces 'token' by a 'string' of up to 32 characters,
and makes 'token' "true". Quotes may be omitted if
string does not contain characters which could
confuse DQ,

Replaces 'token' between two # symbols by a strlng
specified in DO or //ASSIGNed to it.

Percentage symbol followed by a 2-digit hex code

inserts control characters in messages, for example
%09 This comment is displayed at first tab stop
//PAUSE %0A%0A This is displayed two lines down
%1F .Clear screen before displaying this comment

Another JCL file is fetched from disk and its lines
are "eompiled". When done, compilation of the main
file continues. Included files ean //INCLUDE other
files, and so on, but //INCLUDE ecan't be the last line
in any file.

. Similar to "executable" message but displayed only

during compilation. Never goes into SYSTEM/JCL.

Comments in brackets may be added to compilation
instruetions. They are never displayed but may be
seen when file is LISTed.

JCL Reference

Page 15

. message

. [message]

IMPORTANT...

Enhanced messages ... %

#token#

See also . ..

My first JCL file
%1F.Clean message
//ALERT 1,2,1,2,1,2
H0A%0ATwo lines down

The "dot message": message display EXECUTE

Any line in a JCL-file beginning with a "dot" is
simply displayed as-is. If 'message' text is omitted,
then a blank line is "displayed",

No other JCL instruction, except the "dot message"
is allowed in the first line of any JCL-file. Therefore
it is a good practice to always have a "dot message"
in the first line: & note what the file does, date, ete.

Percentage symbol followed by 2-digit hex code can
be used to insert ASCII "control eodes”, such as

%09 tab

%0A line feed

%1F eclear screen
The "clear screen™ code must be placed ahead of the
"dot". The "tab" and "line feed" must be placed after
the "dot" or within the message text, as desired.
Other codes are not recommended {may cause errors).

A token between two "pound" signs ean be replaced
by a string assigned to it in the DO command or by
the //ASSIGN instruction. Variable messages can be
thus produced from standard message "templates™.
Note that a message such as
. Insert disk #1

causes error, because the DO command "thinks™ that
1" is a "token" (but "disk ##1" would be OK).

The “"enhancing" works only if the file is "compiled".

JCL Outline: MESSAGES, and //. //FLASH //PAUSE

. the "dot" alone may be placed in the first line

. or "dot message™",

. or "clear sereen" {ahead of "dot") plus message,

. to make sure that a JCL instruction is not first

. "line feeds" display message one or more lines down

//. message

//. message

Message display COMPILE

Double slash, dot, message: like the executable
"dot-message" above, but displayed only during
"eompilation”. It is never moved to SYSTEM/JCL and
never displayed in "execute" phase. Can be used to
inform the programmer what's happening, particularly
during a lengthy compilation, This "eompilation
message"” cannot be "enhanced” with % or # symbols,

JCL Reference

Page 16

/1]

/17

Always provide /// ...

See also . ., .

Default block marker EXECUTE

If none of the keys pressed in response to the
//KEYIN instruction matches a numbered block in the
file (see //number below) then DO searches for a
block marked by this "default™ /// and if found, the
lines following it are executed.

If numbered blocks are used then /// should be also
provided, even if it's simply the last line in file. If
/// is not provided and the key pressed in response to
//KEYIN does not match any numbered block then the
ecomputer may hang up.

//number //KEYIN

//number

//number

See also ...

. Numbered blocks example

//KEYIN Press 0 or 1
/70

DIR :0

//EXIT

/1

DIR :1

I/

LIB

Numbered block marker EXECUTE

‘Marks the beginning of a block of lines. The 'number!

must be single digit 0 through 9. If a numeric key
pressed in response to //KEYIN matches the block
then lines following the marker are executed up to

. //ABORT //EXIT or //STOP

. next numbered block marker

. end of file

whichever comes first. However, if the "default" ///
marker is found before any of the above, then
execution continues with lines following /// (because
the /// marker is a "mateh™ for "any key™). This may
be intentional, if we wish those lines executed in any
event, regardless of the //KEYIN response.

/1] //KEYIN

. eomment line

» wait for key

. if 0 pressed

. then display directory of drive :0

« and "job done"

. if 1 pressed :

. then display direetory of :1

. if any key pressed :

. then display list of DOS "library commands"

Note there is //EXIT at the end of bloek 0, but not
at the end of block 1. Therefore if we press '0' then
directory is displayed and we're done. If we press '1’
then directory is displayed and then also LIB is
executed. If we press any other key (even 'break')
then only the LIB command is executed.

JCL Reference

Page 17

//ABORT
// ABORT

See also . ..

. Error example
//KEYIN Press 0 or 1
//0

BIR :0

//EXIT

/71

DIR :1

FREE

/TEXIT

/7

Wrong key !
//ABORT

Terminate if error EXECUTE

Display message "Job aborted" and return control to
DOS. Used to terminate processing if error is found.

//EXIT //QUIT //STOP

. eomment

. wait for key

. if 0 pressed

. then display directory of drive :0
. and "job done"

. if 1 pressed

. then display directory of :1

. and free space on all disk drives
. and "job done"

. if any other key pressed

. then display explanation

. &and exit with the message "job aborted”

//ALERT

//ALERT piteh,silence,...

//ALERT (piteh,silence,...)

Model Il . . .

Generate sound EXECUTE

Produces a tone. 'Piteh’ can be a number from 0
(high piteh) through 7 (low piteh), and must be always
followed by a matching 'silence' number 0 (short
silence) through 7 (long silence). Numbers higher than
7 are evaluated "modulo 8" (eg. 8 does the same as 0,
9 same as 1, 17 same as 1, 18 same as 2, ete). As
many 'piteh,silence’ pairs can be typed as fit on one
line and can produce quite a music!

If the number pairs are enclosed in round brackets
then the tune repeats indefinitely, until ‘enter' is
pressed to continue execution, or 'break' to abort.

On Mod-III an amplifier must be conanected to the
AUX pin of the cassette jack (Mod-4 has a built-in
sound generator),

. Put disk in drive 1, press ENTER (BREAK to quit)

//ALERT (7,0,6,1,5,2,4,3)
DIR :1

In this example alert sounds until we insert disk and
press 'enter’ to display directory or 'break' to abort.

JCL Reference

Page 18

//ASSIGN

// ASSIGN token = "string"

. Assign and substitute
//TF 1
//ASSIGN F
//END

//1F 2
//ASSIGN F
//END

//1IF 1+2
DIR #F#
//ELSE

]

/BAS

!T(IN V)"

//FLASH 10 Specify token!

//QUIT
//END (all done)

Assign string to a token COMPILE

Does the same thing within JCL-file as assigning a
string to a token in the parameter field of the DO
command. For example either the command

DO FILE (A=/BAS)
or the instruction in the FILE/JCL

//ASSIGN A=/BAS
would produce the same result. In either case the
maximum length of ’'string' must not exceed 32
characters.

Quotes around the string may be omitted if the string
does not contain any characters which could confuse
the DO ecommand (see example below).

‘The //ASSIGN instruction also automatically makes

the token "true", just as if it was specified in the DO
command.

check if token '1' is valid

. if so then assign the string /BAS to a new token F

mandatory end of first block

. check token '27

if valid then assign another string to token F

. end of second bloeck

now test if at least one of the tokens is valid

if so, then replace token F by the assigned string
otherwise

flash advisory message 10 times

and abort compilation

. "programmer's comment" may be added in brackets

Notice that unlike most symbols in DOS and BASIC
(filenames, variables, ete) a JCL-token ean start with
a digit or can be just one digit. If you eall this
example file TEST/JCL then

DG TEST (1) produces DIR /BAS

DO TEST (2} produces DIR (INV)

DO TEST without any token parameters aborts job.

Notice also that quotes around assigned strings are
optional in most cases. They are only required if the
string contains characters which could confuse DO.
For exampie
//ASSIGN F = (INV)

would not produce DIR (INV) because the round
bracket would be interpreted by DO as "programmer's
comment™ and nothing would be assigned.

JCL Reference

Page 19

//IDELAY

//DELAY duration
See also . ..

DEVICE
//DELAY 150
DIR (INV,SYS)

Short pause EXECUTE

Just pause a few seconds, no message. The 'duration’
is & number from 1 (about 0.1 second pause) through
256 (about 25.6 seconds).

//SLEEP //WAIT

. display device list
. pause about 15 secs to view the display
. then seroll-in the directory display

Notice in this example we don't have our usual "dot
message” in the first line. Normally we recommend it
to make sure a JCL instruction does not appear in
the first line. But DOS or BASIC commands, or any
other kinds of input are perfectly OK in the first
line of any JCL-file.

//ELSE

//ELSE

Alternate conditional block COMPILE

Can be used in //IF //ELSE //END sequence to mark
an alternate block of lines in case the //IF test fails.

For details and examples see //IF

//END

End of conditional block(s) COMPILE

//END Must be used in //IF //ELSE //END sequences to
mark the end of conditional block(s) of lines. For
every //IF there must be a matching //END,

For details and examples see //IF

NOTES:

JCL Reference

Page 20

/1 EXIT

//EXIT

See also . ..

. EXit example
//KEYIN Press 1 or 2
/71

DIR

//EXIT

/72

FREE

DBEVICE
//EXIT

/17

.Try again !
DO = TEST

Terminate JCL processing EXECUTE

Display "Job done" and return control to DOS. This is
required only if termination is desired at a point
other than the last line of a JCL-file (end of file
causes "implied" exit).

//{ABORT //QUIT //STOP

. comment

. wait for key

. if 1 pressed

. then display directory

. and "job done"

. if 2 pressed

. then display free disk space

. and the list of "devices"

. and "job done"

. if neither 1 nor 2 pressed

. then display message

. and start over

If this file is called TEST/JCL then pressing 1 or 2
in response to //KEYIN executes some DOS commands
and terminates with "job done”. Note how we created
an endless "loop" in the last line which restarts TEST
until we press a correct key!

//FLASH

//FLASH [count] message

. Flash example

Flash a message EXECUTE

Flash the 'message' text specified 'count' of times
and continue. The 'count' is a number 0-255. If the
‘count' is omitted or 0 is specified then the message
flashes 256 times. While the message is flashing, we
may press 'enter' to continue eXecution of a next
line, or 'break' to abort JCL processing. Note that
unlike the steady "dot-message" (see .message) the
flashing message can't be "enhanced" with % symbols,

//FLASH Put disk in drive 1, press ENTER (BREAK to quit)
FORMAT :1 (Q=N,ABS,NAME="MYDISK")

Here the 'count' is not specified so the message
flashes up to 256 times, surely long enough to notice
it and make sure the disk is inserted. However, if we
fall asleep, then after 256 flashes the FORMAT will
be attempted anyway, even if the drive is empty,

JCL Reference

Page 21

//IF

//TF token
J/ELSE

//END

Token expressions . . .

//IF -token

//1F tokenl&token?
//IF tokenl+token2
//1IF A+B&-C

Nested //IF . ..

Provide //QUIT . . .

See also . ..

Continued on next page ...

+ pe

Conditionsal bloek start COMPILE

If token is "true" (ie. specified in the DO eommand or
//SET or //ASSIGNed in previous lines of the file)
then lines following the //IF are eompiled (moved) to
SYSTEM/JCL, up to
//ELSE or //END

whichever comes first. The //ELSE is optional. If
provided and the //IF test fails, then lines from
//ELSE to //END are compiled.

For every //IF there must be a matching //END.

The "truth" of several tokens can be tested at once
by using "logical operators":
minus means "if token NOT true then compile™...
ampersand means "if tokenl AND token2 are true..."
plus means "if tokenl OR token2 is true..."
Logical operators can be combined to build more
complex "truth expressions" (no spaces should be
typed between tokens and operators). The operators
are evaluated strietly from left to right. Brackets
cannot be used to alter the order of evaluation.

The //IF //ELSE //END sequences may be "nested",
but for every //IF there must be a properly matched
//END. The general "nesting" scheme looks like this

//1TF tokenl

. Compile first bloek of lines

//IF token?2

. Compile second bloek

//END (end of the "inner" test of token2)

//END (end of the "outer" test of tokenl)
In this scheme the inner test is performed only if the
outer test is "true". If the outer test fails then the
inner test is not attempted at all. '

The "eompilation instruction®™ //QUIT should be
provided after //ELSE in ease the //IF test fails but
no alternate procedure is provided in the JCL-file.
The //QUIT aborts any further processing of DO and
thus also prevents execution of SYSTEM/JCL which
at this point might be useless (for example, the test
fails because we have forgotten to assign a string to
a token, but without that string the JCL procedure is
likely to "bomb" the system).

JCL Qutline: JCL BLOCKS

JCL Reference

Page 22

//IF continued . .

. Simple //IF example . comment, as usual to start the file
//IF D . is token D "true" (specified in DO command)?
//SET M . ¥es, so make token M also "true"
DEVICE . and execute DOS command
//END . end of first econditional block
//IF M . is token M "true" ?
MEMORY . yes, execute DOS command
//END . end of second conditional block
FREE . in any case dlsplay free disk space

When this file is executed with

DO FILE (D)

then the following SYSTEM/JCL is ecompiled
. Simple //IF example
DEVICE
MEMORY
FREE
because the "true" D caused M to be //SET "true™.
On the other hand
DO FILE (M)
creates
. Simple //IF example
MEMORY
FREE
because in this case only M is true. Finally
DO FILE
without any parameters cresates
. Simple //IF example
FREE
because both D and M tests failed.

. Nested //IF example . comment
//TF D . is token D "true" ?
DEVICE . yes, execute DOS command
J/TF M . and see if token M is also "frue" ?
MEMORY . yes, execute gnother DOS command
//END (inner block) . note "programmers comment” in brackets
//ELSE . In case the "outer” test failed
//. Specify (D) or (D,M) . display "compilation comment”
//QUIT . and abort DO processing
//END (outer block) . this //END matches the first //IF
Here the following combinations are possible:
DO FILE (D,M)
compiles and executes
. Nested //IF example
DEVICE
MEMORY
because both tokens are "true!., But
DO FILE (D)
compiles only the DEVICE command. Finally
DO FILE (M) or DO FILE .
displays "Specify (D) or (D,M)" and aborts the DO
processing. The "outer" test fails, and therefore the
“inner" test is not even attempted, even if we
specify the token M in the DO command.
JCL Reference Page 23

//INCLUDE

//INCLUDE filespec

Nesting . . .

. This is FIRST/JCL

. First block of lines

. This is SECOND/JCL
. Second block of lines
. Third bloek of lines

Inelude lines from another file COMPILE

The "compilation” of the main file is temporarily
suspended and some lines are fetched from another
JCL-file. After that “ineluded" file is "done", the
processing of the main file resumes at the line
immediately following //INCLUDE. The 'filespec' must
be & name of a valid JCL file. The extension /JCL is
assumed and we don't need to type it.

The //INCLUDE instruction eannot be the last line in
any JCL-file.

The "ineluded" file may in turn //INCLUDE another
file, and so on, up to 5 (Mod-4) or 10 (Mod-3)
"ested" levels,

The SYSTEM/JCL on the left would be produced by
the ecommand DO FIRST from the 2 files listed below:
. This is FIRST/JCL . This is SECOND/JCL
. First block of lines . Second block of lines
//INCLUDE SECOND
. Third block of lines
Not a very practical example, but you get the idea.

//INPUT

//INPUT [message]

. Input example
//INPUT Enter TIME hh:mm:ss
J/WAIT 13:00:00

Line input EXECUTE

Display optional 'message’ and wait untii something is
typed and terminated by pressing 'enter'. This input
is accepted and processed from the "live" keyboard
as if it was coming from the JCL-file, and then the
DO processing resumes. The input must be a valid
command at the level being processed (DOS, BASIC,
ete) and error-free, otherwise further processing of
the JCL-file is aborted. Also, don't use //INPUT if
//PAUSE or //ALERT are used in any preceding line
{an 'enter' pressed in response to those instructions
can "earry over" to //INPUT and abort processing).
The "message’ should not be "enhanced" with % or #
symbols (they cause all kinds of funny errors here).

This fragment of a JCL-file could be used to enter
the DOS command TIME to make sure the system
time is set correctly for the //WAIT instruction.

JCL Reference

Page 24

//KEYIN

//KEYIN [message]

Single-key input EXECUTE

Display optional 'message' text and wait until a key
is pressed. If one of the numeric keys 0-9 is pressed
and it matches a "numbered bloek" in the JCL-file,
then execute lines in that block. Otherwise execute
lines in the "default" bloek (if provided).

The //KEYIN instruction must appear in the JCL-file
ahead of the numbered blocks which it selepts.

The 'message' should not be "enhanced" with the %
symbols {all kinds of strange errors may result).

For details and examples see /// and //number earlier
in this reference section.

//PAUSE

//PAUSE [message]

. Pause example

Pause and wait ~ EXECUTE

Display optional message and wait until ‘enter' is
pressed to continue, or 'break' to abort further
processing. The 'message' may be "enhanced! with
the % symbols (see "dot-message” at the beginning of
this reference section), but %1F (clear sereen) does
not always work with //PAUSE, so cheek it out first.

//PAUSE Put disk in drive 1, press ENTER (BREAK to quit)
FORMAT :1 (Q=N,ABS,NAME="DATADISK")

DO = TEST

If we call this file TEST/JCL then it could be used
to format a bunch of "data disks" in drive 1, because
this example is an "endless loop" (the last line starts
over). Just keep inserting blank disks and press
'enter'. When all disks are formatted, press 'break' to
return to DOS.

//QUIT

//QUIT

Abort compilation COMPILE

Should be used in //IF //ELSE //END sequences to
abort compilation in case the //IF test fails and no
alternate action is possible.

For details and examples see //IF.

JCL Reference

Page 25

//RESET

//RESET token
See also . ..

. Example of RESET
//TF A

DIR

//RESET B

//END

//1IF B

FREE

//END

Make token "not true" COMPILE

This is inverse of //SET. Even if token is specified in
the DO command, we force it to be "ot true",

//SET

. is token A "true" ?
. yes, display directory
. and make B "not true"
. end of first block
. is token B "true" ?
. yes, display free disk space
. end of second block
This scheme ean be used to foree an "either-or" type
of compilation. Consider
DO FILE (A)
displays directory. Token B is not specified and
therefore the second block is skipped.
DO FILE (B)
skips first block and compiles only the second part.
DO FILE (A,B)
displays directory and makes B ™not true", thus
making sure that the second block is skipped.

//SET

//SET token

See also ...

. Example of SET
//TF A

//SET B

. First block
//END

//TIF B

. Second block
//END

Make token "true” COMPILE

Does the same thing within JCL-file as specifying
'token' in the DO-command. For example either the
command DO FILE (A) or the instruection //SET A
within the file would result in token A being "true",

//RESET

. is token A "true” ?

. yes, then make B also "true"

. and compile the first block of lines

. end of first block

. is token B "true™ ?

. yes, compile second bloeck

. end of second block

Here we can DO FILE (A) or DO FILE (A,B) and in
both cases both blocks will be compiled, because a
"true” A forces B to be also set "true". This scheme
can be used to make sure a needed procedure is
compiled even if we forget to specify a token.

JCL Reference

Page 26

//SLEEP

//SLEEP hh:mm:ss

See also ...

//SLEEP 00:15:00

Long pause {Model 4 only) EXECUTE

Suspend execution for a specified length of time
(hours, minutes, seconds) and then resume processing.
Pressing 'break' interrupts the "sleep" and aborts
JCL processing.

//DELAY //WAIT

. just 15 minutes
. insert a few such lines at strategic points in your
file as an excuse for coffee breaks or short naps.

[/STOP

//STOP

See also ...

. Example of //STOP
BASIC GAME/BAS (F=1)
CHRIS, HEIDI, EvA
//STOP

Terminate JCL processing EXECUTE

Return control to the "live" keyboard but "stay
where you are". Use //STOP to prevent premature
exit from a BASIC program (or machine program). If
we don't use //STOP and the end of JCL-file or
//EXIT is reached when our program requests an
input, then the program is immediately interrupted
and control returns to DOS!

//ABORT //EXIT //QUIT

- load BASIC and run GAME/BAS with one open file
. prefab input to a prompt "Input 3 players names"

. //STOP makes sure that any following INPUT
request can be answered "live" from the keyboard.

[/WAIT

// WAIT hh:mm:ss

" See also ...

//WAIT 13:00:00

Pause until specified time EXECUTE

Suspend execution until specified time matches the
system time (expressed in standard 24-hour format,
hours, minutes, seconds). Pressing 'break' interrupts
the waiting and aeborts JCL processing.

J/IDELAY //SLEEP

This fragment of a JCL-file would make sure nothing
happens until you get back from lunch.

JCL Reference

Page 27

@LABEL

@label

See also . ..

. Labeled blocks
CLS

TIME (CLOCK)

aB

DIR /BAS:0 (A=N,P)
@acC

DIR /CMD:0

@D

DEVICE

Labeled bloek marker COMPILE

The label must begin with the @-symbol and can have
up to 8 letters and/or digits in any combination. Even
a single digit will do, such as @1 (but don't confuse
this with the "numbered" blocks). Labels are used to
mark the beginnings of blocks of lines in a "raw"
JCL~file. Each bloek can contain any number of
lines, When a JCL-file with labeled blocks is "done"
with a command such as

DO FILE (@QLABEL)
and the label specified in the parameter field
matches one of the labels in the file, then those lines
which follow the selected label are "compiled" (ie.
moved) to SYSTEM/JCL, up to
. another label
. end of file
whichever comes first. Any number of different
labels and procedures of any length can be included
in the file, but only one label may be selected for
compilation by the DO command. '

If label is specified in the DO command, but does not
match any label in the file, then error "procedure not
found" occurs and compilation is aborted.

If label is not specified in the DO command, then
only lines from the beginning of file up to any first
label are compiled. For this reason a label should
never be the first line in any JCL-file (start the file
with a "dot-message” or & DOS or BASIC command).

JCL OQutline: JCL BLOCKS

clear sereen

. turn on elock display

label B
if selected then print "short" directory of /BAS files

. label C

if selected then display directory of /CMD files
label D

if selected then display list of "devices"

Here SYSTEM/JCL depends on label in DO command.
Call this sample TEST/JCL and
DO TEST (@B} produces DIR /BAS:0 (A=N,P)
DO TEST (@QC) produces DIR /CMD:0
and so on; if no label is specified, then only initial
lines before first label go into SYSTEM/JCL
PO TEST produces . Labeled choices
CLS
TIME (CLOCK)

JCL Reference

Page 28

o

‘ - - -

INDEX

JCL INSTRUCTIONS

In this column the first page number
refers to the detailed reference
section. Other page numbers (if any) may
refer’ to discussion in the ™Qutline"
section. The capital letter "C" indicates
"eompilation" instructions (instructions
without "C" are "executable"),

.message 16, 10
//.message 16, 10 C
i 17, 8
//number 17, 8

//ABORT 18
//ALERT 18, 10

// ASSIGN 19, 7 C
//DELAY 20

//ELSE 20, 8 C
//END 20, 8 C
//EXIT 21

//FLASH 21, 10

//1IF 22, 8 C
//INCLUDE 24, 8 C
//INPUT 24

//KEYIN 25, 9, 17
//PAUSE 25

//QUIT 25, 8, 22 C
//RESET 26, 6 C
//SET 26, 6 C
//SLEEP 27

//STOP 27, 2

// WAIT 27

@LABEL 28 C
BIBLIOGRAPHY

LDOS Manual for Model I and 11
by Logical Systems, Ine.

Disk System Owner's Manual Model 4/4P
by Radio Shack

Mod III by Chris for LDOS 5.3

by Christopher Fara
published by Computer News 80

GENERAL INDEX

AND 86, 22
Assign string to token 7, 19
BASIC commands in JCL files 2
Blocks: conditional 5, 8, 22
included 5, 8, 24
labeled 5, 9, 28
numbered 5, 9, 17, 25 -
Break (abort JCL) 13
BUILD 3
Comments = Messages
Compilation 1, 4, 5
instructions 15
messages 10, 16
DO command 3, 4
DOS commands: in JCL files 2
BUILD 3
DO A
Enhanced messages 10, 16
Errors 12 .
Executable: instruetions 14
messagres 10, 16
Execution phase 4 -
Expressions with tokens 6, 22
Interfacing JCL: with BASIC 2
with DOS 2
with machine programs 2
Instructions: compilation 15
exccutable 14
JCL fliles 1, 3 .
Logical operators 6, 22
Machine programs and JCL 2
Vacro 1
Messages: compilation 10, 16
enhancing 10, 16
exccutable 184, 16
programmer's 10
NOT 6, 22
Operators 6, 22
OR 6, 22
Parameters 4, 5
labels 9, 28
tokens 6, 7
Programmer's comments 10
Replacing tokens 7, 19
Sonnd 160, I8
Summary of instruetions 14
Symbois 11
Terms, confusing 1
Token 1,6
true B
Variables = Tokens

I I BN W N A BN BN BE B S an B A e B B E .

